001/** 002 * Copyright (c) 2007-2011, Regents of the University of Colorado 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without 006 * modification, are permitted provided that the following conditions are met: 007 * 008 * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 009 * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 010 * Neither the name of the University of Colorado at Boulder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. 011 * 012 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 013 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 014 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 015 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 016 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 017 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 018 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 019 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 020 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 021 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 022 * POSSIBILITY OF SUCH DAMAGE. 023 */ 024package org.cleartk.examples.documentclassification.basic; 025 026import java.io.File; 027import java.util.List; 028 029import org.apache.uima.collection.CollectionReader; 030import org.cleartk.examples.documentclassification.advanced.GoldDocumentCategoryAnnotator; 031import org.cleartk.ml.jar.DefaultDataWriterFactory; 032import org.cleartk.ml.jar.DirectoryDataWriterFactory; 033import org.cleartk.ml.jar.JarClassifierBuilder; 034import org.cleartk.ml.libsvm.LibSvmStringOutcomeDataWriter; 035import org.cleartk.opennlp.tools.SentenceAnnotator; 036import org.cleartk.snowball.DefaultSnowballStemmer; 037import org.cleartk.token.tokenizer.TokenAnnotator; 038import org.cleartk.util.ae.UriToDocumentTextAnnotator; 039import org.cleartk.util.cr.UriCollectionReader; 040import org.apache.uima.fit.factory.AggregateBuilder; 041import org.apache.uima.fit.factory.AnalysisEngineFactory; 042import org.apache.uima.fit.pipeline.SimplePipeline; 043 044import com.lexicalscope.jewel.cli.CliFactory; 045import com.lexicalscope.jewel.cli.Option; 046 047/** 048 * Copyright (c) 2012, Regents of the University of Colorado <br> 049 * All rights reserved. <br> 050 * 051 * Illustrates how to train a simple document classification annotator. For a more in-depth example 052 * that demonstrates ClearTK best practices including the use of more sophisticated feature 053 * extractors and the evaluation framework refer to the examples in 054 * org.cleartk.examples.document.classification 055 * 056 * 057 * @author Lee Becker 058 * 059 */ 060public class TrainModel { 061 062 public interface Options { 063 @Option( 064 longName = "train-dir", 065 description = "Specify the directory containing the training documents. This is used for cross-validation, and for training in a holdout set evaluation. " 066 + "When we run this example we point to a directory containing training data from a subset of the 20 newsgroup corpus - i.e. a directory called '3news-bydate/train'", 067 defaultValue = "data/3news-bydate/train") 068 public File getTrainDirectory(); 069 070 @Option( 071 longName = "models-dir", 072 description = "specify the directory in which to write out the trained model files", 073 defaultValue = "target/simple_document_classification/models") 074 public File getModelsDirectory(); 075 076 @Option( 077 longName = "training-args", 078 description = "specify training arguments to be passed to the learner. For multiple values specify -ta for each - e.g. '-ta -t -ta 0'", 079 defaultValue = { "-t", "0" }) 080 public List<String> getTrainingArguments(); 081 } 082 083 public static void main(String[] args) throws Exception { 084 Options options = CliFactory.parseArguments(Options.class, args); 085 086 // //////////////////////////////////////// 087 // Create collection reader to load URIs 088 // //////////////////////////////////////// 089 CollectionReader reader = UriCollectionReader.getCollectionReaderFromDirectory( 090 options.getTrainDirectory(), 091 UriCollectionReader.RejectSystemFiles.class, 092 UriCollectionReader.RejectSystemDirectories.class); 093 094 // //////////////////////////////////////// 095 // Create document classification pipeline 096 // //////////////////////////////////////// 097 AggregateBuilder builder = new AggregateBuilder(); 098 099 // Convert URIs in CAS URI View to Plain Text 100 builder.add(UriToDocumentTextAnnotator.getDescription()); 101 102 // Label documents with gold labels for training 103 builder.add(AnalysisEngineFactory.createEngineDescription(GoldDocumentCategoryAnnotator.class)); 104 105 // NLP pre-processing components 106 builder.add(SentenceAnnotator.getDescription()); // Sentence segmentation 107 builder.add(TokenAnnotator.getDescription()); // Tokenization 108 builder.add(DefaultSnowballStemmer.getDescription("English")); // Stemming 109 110 // The simple document classification annotator 111 builder.add(AnalysisEngineFactory.createEngineDescription( 112 BasicDocumentClassificationAnnotator.class, 113 DefaultDataWriterFactory.PARAM_DATA_WRITER_CLASS_NAME, 114 LibSvmStringOutcomeDataWriter.class.getName(), 115 DirectoryDataWriterFactory.PARAM_OUTPUT_DIRECTORY, 116 options.getModelsDirectory())); 117 118 // /////////////////////////////////////////// 119 // Run pipeline to create training data file 120 // /////////////////////////////////////////// 121 SimplePipeline.runPipeline(reader, builder.createAggregateDescription()); 122 123 // ////////////////////////////////////////////////////////////////////////////// 124 // Train and write model 125 // ////////////////////////////////////////////////////////////////////////////// 126 JarClassifierBuilder.trainAndPackage( 127 options.getModelsDirectory(), 128 options.getTrainingArguments().toArray(new String[options.getTrainingArguments().size()])); 129 } 130 131}